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ABSTRACT

In atmospheric experimentation three ground-based detectors suffice
for determining wind vectors that could be present in a certain space
volume. While this is true in general, the geometry simplifies a great
deal, when these vectors can be taken as horizontal. Since to do so will
often be warranted, the pertinent method for a proper arrangement of
detector positions and attitudes has been developed in detail, With a
suitable layout winds reasonably constant near a selected height, if
blowing into and out of a quarter of the rose, can be calculated with
sufficient accuracy and confidence. The error analysis assumes that
the observational time uncertainty is at most +0,1 sec.

To observe wind vectors in the remaining directions, or at several
heights simultaneously, the use of more detectors (or of the available
multiple detectors) is called for. This is subject matter for future
investigation, as is the more intricate problem posed by non-horizontal
winds.
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TECHNICAL MEMORANDUM X-53754

WIND VECTOR CALCULATION USING CROSSED-BEAM DATA
AND DETECTOR ARRANGEMENT FOR MEASURING HORIZONTAL WINDS

SUMMARY

The report's first part (sections I through V) contains the geo-
metric foundation and subsequent development of a general method for
measuring atmospheric winds by exploiting the ideas of crossed-beam
experimentation., It shows that (and how) with three single-beam
detectors at ground level one should be able to monitor a variety of
unknown winds that could be blowing within a limited space volume, pro-

vided any such wind, once present, remains sufficiently stable during
observation.,

A second part (sections VI through VIII) applies -- and further
develops =-- the method in the practically meaningful and geometrically
least complex case where the winds can be taken as horizontal. A cri-
terion for this to be justifiable is given. Flow conditions, wind
identification, error analysis, and the desire to keep the detector
arrangement compact impose a number of restraints that are reflected in
the experimental layout finally suggested. These restraints are more
acutely felt the higher up one proposes to measure. Equations for
actually computing the two velocity components are supplied.

A concluding section delineates problems yet to be solved.
I. INTRODUCTION

As it is well known, wind determination by crossed beams presents
a number of problems. By way of examples we may list: record evaluation
complications through long observation times and non-stationary statistics,
interacting intensity fluctuations through the scattering of light from
different sources (sky and sun), the disturbing influence of cumuli and
other clouds, unwanted features in absorption physics. Most of them are
or have been under vigorous attack elsewhere.

The report on hand is concerned with the specific difficulties

encountered when the net results of the experimentation proper, i.e.,

the characteristic delay times, are to be used for calculating the winds
they are associated with,



To achieve this end, resources of spatial geometry are assembled in
a preparatory section. Still there are quite a few problems left that
must be overcome. 1In the first place, covariance peaks at characteristic
times will be registered whenever eddy trains travel on paths that happen
to connect beams; one must sort out those that belong to one and the
same wind. In the second, one should be able to say in what space region
the latter was blowing. Thirdly, one cannot be satisfied to detect just
this one wind on the chance it might be present, but wishes to monitor
an array, as large as possible, of unknown wind vectors near a predeter-
mined location. Fourth, observational error margins must be prevented
from getting blown up to unacceptable dimensions. For this reason travel
paths too short cannot be admitted. Too long ones are prohibited lest
eddies lose identity. Finally, one would not like, on practical grounds,
to have to place the detectors too far apart.

These warnings and requirements were heeded in working out the body
of the paper. A rather definite set of detector specifications for
observing horizontal winds is the outcome that leaves to free choice but
two parameters out of ten.

II. GEOMETRIC PRELIMINARIES

Geometric analysis provides a number of results useful for the
argument to follow and for the realization in general of spatial rela-
tionships associated with the crossed-beam method.

The two straight lines, a and b, established by the points P,, Py
and the direction vectors®,

Q=i + s + azk

o
|

= Bl + B2] + B2k,

"f s I s
Vectors are designated by underlined symbols; e.g., i, j, k are the
unit vectors in axis directions,




have the equations

X - X1 . y = V1 = %2 - z3
0%} 045} 0=
X=X _ Y- Vo _ 2 - 22
B1 B2 B

With a view to later application
i.e., that

it is assumed that they do not intersect,

X2 - Xl y2 - yl 22 - Zl
Ay = o1 o2 a3 # 0. (1)
B1 Be B>

This excludes parallelism as well,

parallel planes in which they are contained.

Nevertheless, the lines do define two

The direction of that pair's

common normal is given by the unit vector (called the "binormal' direction

here™)

sin w
ab

n = ——— fa x 8],

(2)

Wy}, being the angle made by the vectors ¢ and B when crossed:

cos
ab

Introduce now a further direction

m=mi+mz] + mzk

= Q1B1 t+ OB + U383

(lm| =1

“This agrees with the usage of the word in the theory of spatial curves,
provided that the two planes are interpreted as the lines' tangential

planes.



not parallel to those planes;

my My Mmx

(maB)

il

Qy (02 Q= # 0.

Br Bz B3

The special case where m = n evidently is not excluded.

Then there exist two -~ and only two -- points, Pﬁ and Pg, on the

lines a and b such that P* P is parallel to m. Clearly, among the
directions m only those are admltted as are capable of connecting a with
b in that order (excludlng all the reverse orlentatlons) The position
vectors, _J and EE, of Pl and P% are glven by

Xp = X3 Y2 = Y1 Zp " 2,
o
r§ =g+ B B B
-1 7 (moB) 1 2 =
my mo ms
> (3)
’
Xo = X3 Y2 = Ya Zp = 23
X = 1o+ £ a a a
=~ 2= (moR) 1 = 3
my mo m
J

where I3 and I define P, and Po. It is clear and can be shown mathe-

matically® that the choice of these two points on a and b cannot affect

the vectors rﬁ and r2 If the length Pﬁ Pg is denoted by sz we may write
¥ p¥ X %* ¥*
> 7 —-
PlP = Z-rl-Rabm‘

Figure 1 illustrates this formula.

xSee: Heybey, W. H., "On the Wind Component Measurable by Crossed-Beam
Arrangement," IN-AERO-7-67, October 12, 1967.
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Figure 1. The vectors ri, rg, and m

The projection onto the binormal of any straight segment connecting
a and b is equal to the binormal distance, &, itself. This is readily
recognized by figure 2, which depicts the simplest geometric arrangement
possible without loss of generality. Of the two parallel planes estab-
lished by the lines a and b one is taken as the (z,x)-plane and the
other as parallel to it. The y-axis is defined by the binormal. The
prOJectlng lines through the points P, or Pi on the one hand, and through
P5 or P2 on the other are the lines a and b themselves, as they are normal
to the binormal.

Since thus the projections of Pi Pg and P; P, are equal:

7
‘H
VR
1
I [}
k3
o
=]

Il
~~~
o]
v

]
~
|-
N’
Iz



we find that

or that

*
P2
b /
P2
44» y
B
Figure 2. General two-beam geometry.
Xa = X3 Y2 = Ya Zz = 23
* = L
Rab - n) = @1 Az 3 sin w, °’
ab
Bi1 5P B
R (m * n) sin = A
ab n) sin L b
A
* ab
= - 4
Rab = Gmos)” (%)




This is the shortest expression for the distance P* P*. That the

v quotient at right is always positive can be verifiéd %n a convenient
manner if (as one is permitted to do) the defining points P,,P, are
replaced by the binormal terminals A, B with coordinates

X3 =y1=21=0

[
o
V
o
N
Y

I
o

Xs =0, yo =

Then, since Q= = B> = 0,

0 5 0
(07 2]
A = 10y 0 Ozl = S}
ab 4
Bz Ba1
. B 0 B=
and
m; My M3
Gz Q1

(mOtB) = O£l 0 063 = ms .
Bz Bi
Bi o Bs

Because the vector m points from Pi to P, its y-component is positive:
ms > 0, It follows that

Cab =250
(mof) mp )

III. TWO-BEAM EXPERIMENTATION

Broadly speaking, wind determination by crossed beams assumes that
the bulk speed of eddy propagation can be taken as a sufficiently close
approximation to the main wind speed. 1In the simplest atmospheric
experimentation two detectors receive natural light out of a conical
volume extending from their objectives to great distances. For the

- present purpose these '"beams' are replaced by the axes of the cones.



Likewise, turbulent eddies will be idealized to have infinitesimal size.
The time? sz, an eddy needs to cover the distance between two points

P% and P% is determined experimentally. It is assumed as equal to that
particular delay time that produces maximum covariance between the intens-
ity curves obtained from the two beams, and is positive or negative depend-
ing on whether, in order to locate the maximum, the b-record has to be
delayed relative to the a-record or vice versa. If it is negative, the
velocity

V = —p— (5)

y ¥
* =
ab
goes from Pg to Pﬁ, i.e, it is in the reverse direction of m.

Wind variations pending observation are to be reckoned with. Fluc-
tuations in strength tend to blur the covariance maximum, but would not
blot it out completely except perhaps when excessive or unidirectional.
Variation of direction appears more serious. The eddies leaving Pﬁ
(or PZ) over a period of time may often miss the second beam®; those that
do arrive at it may not be numerous enough for a clear definition of the
maximum. Although the beams a and b are immersed in a three-dimensiomnal
wind field, the directions of the motion could be inappropriate at every
point of the a- (or b-) beam, meaning that no single eddy path will cross
the second beam; compare Figure 3 (where however two connecting paths
are indicated). At any rate, the number of covariance maxima will be

Figure 3. Curved eddy 'sheet" ABCD downstream from beam a.

*In physical reality this danger abates somewhat because of the finite
beam width and finite eddy size.




limited and may even be zero, for instance, if the wind is blowing in
a direction normal to the beams' binormal. This observation is a first
indication that more than just two detectors will be needed for meas-
uring winds.

Counting on the finite beam width and eddy size, we infer from
Figure 3 that it will be advantageous to have the beams pass each other
at a relatively close distance® to insure eddy interception and an
approximate wind vector finding. However, direct intersection would
cause maximum correlation at the common point, irrespective of wind
direction (which thus remains unknown) and leaving us with an indeter-
minate expression for the wind strength, V, the distance zero being
covered in zero time.”™ A finite binormal distance is required which
moreover ought not to be chosen too small in order to escape short
travels with consequent large effects of observational inaccuracies.
On the other hand, it must not be allowed to be too large either, lest
eddy change or decay on the longer paths impair or destroy the needed
correlation.

In an ideal atmosphere (considered first) the wind is constant
within sight, its direction being given by the unit vector
v =vyi+voj + vk, (6)
If we knew it, we should put

m=*y )

and, by the system (3) could uniquely determine the position vectors

rl and r5 (the double sign cancels). The covariance curve would
exhibit™a single maximum at the time, TZb’ needed for an eddy to move
from Pl to P2 (or conversely). The strength of the wind would emerge as

res - r- R
% s .
Tab ab!

" A later reasoning will throw support to beam nearness from quite a
different angle.

laals
W

If, in a rare instance, the wind vector happened to be parallel to
the plane of the intersecting beams, the situation would be quite
as confused.



This result applies in wind tunnel experimentation when the convective
motion can be taken as parallel to the tunnel axis. 1In the atmosphere a
reasonable surmise regarding v will not in general be at hand. However,
the component of the wind vector

V=1vy + jVo + kVs (8)

in direction of the binormal is still obtainable. With the aid of
expressions (5), (7), (4), and (2)

V—+R"’l—b(v n)-+Aabl.E_Aab(VOéB) 1
=% M -Dn) == 7% === - )
n b Tob (£ vap) Tab (vap) sin Wop
or
A
Yt S 2
b ab

Every term at right is known here.

On the other hand,writing V, = V - n directly in terms of the
expressions (8) and (2),we arrive at the important relation

Aab 055 Q= Cl 41 4] (025}
o Vy + Vo + Vs, (10)
ab B> B3 Bz B1 B1 Be

which is basic for what follows.

IV. PRINCIPLES OF WIND VECTOR DETERMINATION -
THREE-BEAM GEOMETRY

It will again be assumed in this section that the wind vector is
constant throughout the observed atmosphere.

Let us introduce a third (c-) beam identified by a point Ps and the
unit direction vector

2 =71l + 721 + rzk.

10




It must not intersect with the first

apply

two beams, so that the conditions

X3 = Xp Yz = Y2 Zz = Zp
Bye = P1 B= Bz [|# 0
71 72 73
(11)
X1~ X3 1= ¥> 21" 23
Boa = 71 72 Y5 |#£0
Gl Qo U=

J

Correlation of the b- and c-records and of the c~- and a-records will
result in two covariance maxima at v = The @nd T = Tia, respectively.

For the unknown components V., V., Vs, three linear equation can
than be set up according to pattern (10):

. h
A b (073 O Q= xq 021 (975}
Ly = Ti = v, + Vs + Vs
ab B Bz Bz Ba B1 B=
c B2 B> Bs Ba1 B1 Bo
Lo = P vV, + Vs + V= > s (12)
be Y= 73 73 7a Y1 72
Aba Y2 73 73 71 Y1 72
L= =F = vV, + Vo + V=
ca Clo C= O=s 1 o2} U
o
which are solved to give
(@By) Vi = yiLy + 1Lo + BlLBW
(@By) Vo = yoLg + ol + Bols (13)
(@By) Vs = yzLy + Qslo + Bsls

11



The determinant

Ay Qs O
@By) = |B1 B2 B3 (14)

71 Y2 73

must not be zero. None of the beam directions @, B, y is allowed to be
parallel to the plane of the other two if crossed. 1In particular,
parallelism of any beam pair (e.g., O; = Bi» 1= 1,2,3) is excluded;

it would cause the determinant to vanish,

By the system (13) three beams suffice to measure winds; however,
not all conceivable winds. If, e.g., V happened to be parallel to the
pair of parallel planes established by two beams, one of the right sides
in equations (12) would be identically zero and thus remove the equation
from the system. If V were parallel to one single beam, two equations
would become meaningless for the same reason. Such velocities there-
fore cannot be observed by the lineal beams as used. Although one can
show that more than just the above few directions are not accessible
through a set of three (single beam) detectors alone, such a set is
being drawn on throughout the report as paradigmatic and basic.

After solving for Vi, V;, Vx the points Pﬁ, P%¥ and the correspond-
ing pairs P§, %* (on b and ¢), Pg, Pg (on ¢ and a) can be determined
(Figure 4). 1In doing so, one is led to use the unit vector

Figure 4. The six points P% ... PE.

12




and finds

o
W

that

Q

(vap)

(vap)

ey

=

vBy)

I~

(vyr)

Q

M (vy@)

Vii + Voi + Vak

2 2
~/V§+ V2 + V2

Xo

X2

X

X3

-xl

—xz

7a

Xz

71

Yo

Yo

Y>3

b

Y1

Y1

-yl
B2

Vo

A

Co

Vo

= Y2

72

- Yo

Bo

A
(02°)

Vo

-y3
72

Vo

Zz'zl

Z2

Zz

Z3

23

27

B>

V3

V3

73

Vs

B=

V3

73

23

Zo

Z2

Z3

Z3

(15)
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Note that one may write V; for vj, since the common factor JV? + Vz + V%
cancels,

Like these position vectors the lengths of the travel paths are
needed for later application; they can be written down according to
expression (4) where, since m = * v, absolute marks will be added:

X2 = X3 Y2~ Y1 2Z2-° 2,
041 G2 (04
oF oE - gt o Ba Bz B>
1 ~ Tab
Vl V2 V3
041 022 o}
B1 Bo B

X3 = Xp Yz = Yo 23 = Zp
B1 Bz B
% - 71 72 73
PS5 Py = Rbc = (16)
Vl V2 V3
B1 B= B>
71 72 73

X1 = Xz Y1 - Y3 21 - 23

71 72 73
xq (072} O

L kS

P% =R =

s Pg ca
v 1 Vo v =
71 72 73
02} Clo (04

14




It is of some 1nterest to also consider the point pairs Pl, Pg
on beam a, P%X, P%¥ on b, P P4 on c (Figure 4). Their distances
r6 - rl etc. appear in a mathematlcally compact form if the velocity

‘components in expressions (15) are replaced by the solutions (13). One
then arrives at

* L2 & % % * La &

rg - ¥ = T+ ) =

£ 7 2 (apy) (Tab "be Tca) = (aBy)
. N Ls B

27 I3 = (apy)

Je

Ly 7
27T ey

u*

By conditions (1) and (11), none of the L; defined in the system (12)
are ever zero. If, however, a measurement shows that o = 0, all three
distances must have been zero, meaning that the two points on each beam
coincide (Figure 4). An easy reasoning leads to the conclusion that in
such a case a straight line parallel to wind direction exists containing
the three .double points in one row and thus connecting all three of the
beam tracts. Obviously, two of the ¢* will have the same sign. Evalua-
tion of the records must have indicated, say, maxima at positive delay
times for the (a,b)- and (b,c)-covariances, and a maximum at a (fitting)
negative delay time for the (c,a)-covariance.

V. LOCALLY VARYING WINDS

We now turn to an atmosphere in which the wind vector is allowed to
vary with location but not with time, or only insignificantly so.
(Remarks to the latter point have been made in section III.) 1In other
words, for the duration of the observation the wind motion is supposed
to be reasonably steady in the aerodynamic sense of the word.

With varying winds a peculiar difficulty arises in that the
observed covariance peaks may have been caused by different winds
blowing in different regions of the atmosphere. The sys tem (12) mus t
not be solved in these circumstances, since the times T”b, Tbc, Tca
might be associated with three different eddy motions, X' from a to b,
V"' from b to ¢, V" from ¢ to a. The system would break up into mutually
independent equations.

15



To escape deception as far as possible one should keep the beams
running close together in a narrow space region one wishes to explore.
The wind can then be taken as constant there, and the formulism of the
preceding section applies. Furthermore, the beams should be guided so
as to enable a large number of unknown eddy trains to connect all three
within that region. This furnishes us with an equally large number of
meaningful travel time triads. If one of them is actually observed, the
actual presence of the pertaining wind in the region is strongly indicated.
To be sure, there might be connecting paths outside it, associated with
eddy courses in more or less distant regions. But there will be few of
them (Figure 3), and there is a slim chance only that the corresponding
triads will fall within the compass of those established as meaningful,
leading to the acceptance of a spurious wind. For added confidence, one
may arrange for a fourth beam to be sent through the same narrow space
volume; if the solutions of the four systems (12) that emerge with the
possible three-beam combinations yield, by and large, four identical wind
vectors, the likelihood of having observed a true wind can be said to
approach certainty.

It is seen that the problem comes up of finding serviceable beam
configuration which can respond to a relatively large variety of con-
stant winds that may exist in a given small space volume. It will be
dealt with here under the simplifying assumption that the natural wind
can be taken as horizontal. For such winds, direction more than
strength turns out to be the quantity limiting the scope of trustworthy
measurement. A number of trials has led to the conclusion that the
azimuthal range should not be taken larger than 90°, or, positively
speaking, that with three detectors horizontal winds blowing into or
out of a quarter of the rose can be observed. This range could be
slightly extended at the expense of mathematical simplicity (and per-
haps physical accuracy). To cover the entire rose is not feasible. One
cannot connect three lines by horizontal parallels which, whatever
direction they may have, are always at about the same height.

VI. MEASURING HORIZONTAL WINDS

With detectors P,, P5, P at ground level and beams pointing upward,
zy =22 =25 =0, and @5 > 0, B3 >0, y3 > 0. For ease of writing and
greater perspicuity we introduce the abbreviations

7
i=a, §=b, Ko, k=1,2. (17)
Qs k Bx k 73 k

16




The determinants (1) and (11)

Xo - X3
Ap = P> az
by

X3 - Xp
A, = Bars by
€1

X3 - X3
L., = v=0s3 c1
aj

can then be written as

Y2- Yy O
az = s34
b 1
y3 = 9y2 0
ba 1| =payste ) (18)
Co 1
yi-ys O
Co 1l = 73005
as 1 ’

The three determinants A newly defined here appear in the system (13)
for the V; which goes into

\

A A As
ﬂmvl:Cl—“«%——"'al_%"'blT
P57 Tab Tbc Tca

A AN A
—@‘QZ)'V2=C2—~,%"+32%+132'73' . (19)
X3P37 Tab The Tea
@) L1 L2 L5
*3B373 Tab  Tbe Tea J

If, with a given beam configuration (yet to be developed) experi-
mentation yields three values 17 N Tga such that the ratio

Vs

o
ab’ 'be’

V3

2 2 2
NVZ + VE + V2

17



turns out to be very small, the simplification vz = 0 seems warranted; we
are dealing with an essentially horizontal wind.

On condition that Vs = O the third line of the system (19) can be
used to eliminate, e.g., the ratio Ag/sz. V,; and V5 are then given by

Q 1 Do )
SOB7) = (el - by) =4 (ag - by) 22
> 1= (c3 1) Tx 1 1) Tx
=B37 3 b e
?. (20)
(o A AN
o)y, = (ez - ba) TP+ (az - Do) T
3P373 ab be
J
It will be noted here that the determinant
Dy(cy = by)  Op(ay - by) s (By)
100
Ny(cz - bp)  Ns(az - bp) RELEIE

is different from zero by earlier hypotheses which exclude beam inter-
section and parallelism. Equations (20), for the moment considered as
a linear system for 1/T§b and 1/T§C, can therefore be solved; the ratio
of the travel times emerges as

Q = TTC - % (ae - b2) - q(aL- bl) (21)
T;.b Al q(Cl - bl) - (C2 - b2)
where the quantity
V2
q = '\-,—l = tan @ (22)

defines the azimuthal angle, ¢, as counted from the positive x-axis.
The derivative of Q with respect to q shows that the function Q(q) is
monotonic* for all q, that is, forever increasing or decreasing, with

*
It represents a hyperbola with a horizontal and a vertical asymptote.

18




€ - by

€y - by

an infinite discontinuity at q' = This particular value of ¢

is not permissible (zero or infinite travel times are not admitted);

a_-b
neither is the value q" = ;EL__EZ , at which the numerator of Q(q) is
i~ a1

zero, From physical necessity alone then certain q-ranges around q'
and q" are inaccessible; horizontal winds in certain ¢@-ranges cannot
be observed with a three-detector setup.

One may arrange beam directions such that both q' and q" are negative:

¢s - by as - by
__<0’
cl-bl al-bl

< 0. (23)

By definitions (17), these conditions impose restrictions on the direc-
tion cosines O3, Bi, 7i-

Is it then possible to "catch'" at least all winds with positive
values of q(0 £ q = w), i.e., with azimuths in 0 = ¢ = 90°,
180° = @ = 270°? 1In these ranges the ratio of travel times will mono-
tonically vary between the values

-%ag'bg

Q0 =20 = - 7 T
and (24)
A" Bt Lt
Q(x) :Qoo - T Ay € - bl .

These are uniquely determined by the detector positions and beam direc-
tions. 1In the latter course of the investigation the quantities Q, and
Qw» conversely, will be prescribed and then aid in shaping the experi-

mental configuration. They constitute parameter combinations and have

been introduced to lessen the number of significant parameters.

To answer the above question it is at first necessary to decide on
the location at which the measurement is to be made, especially on the
height interval circumscribed by the positions of the points P?. The
heights of P}, P§, P can be disregarded as equal to those of P*, Pg,

- = X
PE, respectively, Since the z; are zero, the system (15) yields

relatively simple expressions for the z-components:

19



* o -y - (xz - x1)q

Zl(q) (3.2 - b;) — (ai " ;;L-)q

* - ys = yo) - (x5 - x3)q

z5(q) (b - CZ) - (Bif_ c)a ? . (25)
%* = Ly = ¥=) - (x5 - x3)q

25(@) (cz ~ apg) - (cy - a;)q)

In a rectangular (q,z*)-system the curves z?(q) present themselves as

hyperbolas with asymptotes parallel to the system axes (provided that
the factors of q in the denominators are not zero). They favor our
purpose in that they offer wide q-ranges in which the z¥-values are
nearly constant. Winds blowing at (practically) the same level from a
rather large compass of directions have thus a chance to be detected,.
This decisive advantage is lost with the straight lines that would
appear if the q-coefficients in the denominators were set zero; this
would also entail that (CBy) = 0.* Let us agree then to impose the
further conditions

(ay - b1) #0, (by - ¢3) #£0, (cp - az) ¥ 0

on the beams' direction cosines.

While it is true that
2¥(@") = £ o, 2% (q') = t o
1 - 3 -

these discontinuities, corresponding to the vertical asymptotic lines

q = q" and q = q', are placed outside the interval to be investigated
(0 £ q = «), both q'" and q' being negative. To ensure the same feature
regarding the third hyperbola, zg(q), we will require that

%
“To avoid this predicament, only one of the coefficients in fact could be

taken as zero. One can show that all three vanish if two do so.
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The three equilateral hyperbolas will then, in 0 £ g £ » run more or
less parallel to their horizontal asymptotes.

For a more detailed description, the coordinates of the three
detectors must be taken into account, as appearing in the numerators
of the functions z?(q). Let us place P, at the origin, P, and Px in
the upper right and the lower left quadrants, respectively (Figure 5).
This arrangement has been found advantageous for measuring horizontal

-XXO

=y
HYo

i

Figure 5. Detector arrangement and coordinates.

winds with azimuthal angles in the remaining two quadrants. The four

positive position parameters Xgp, Yp, A, W are introduced for practical
reasons and are left indeterminate at present., With their aid the set
(24) can be rearranged to give

Ly + X q w
Q) = > i
23 (az - bp) - (ap - bl)q
(w+ Dy, + A+ Dxq

% = - ° 25
z:,’(q) (bs = co) - (b; - cq)q > (25)
. ) yo + qu

ZS(Q) (cs - ap) - (cp - al)q_)
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These heights all ought to be near a preselected height, z = h > 0, near
which the constant wind vector is being sought. This is especially true
at the proposed ends, q = 0 and q = =, of the q-interval. With positive
numbers Dj, Ej not far from unity we may therefore put

My, . (b + Dy Y,
= - —— h — =
a- b2 Dl, b2 - ¢o D3, co - 4 hD5 (q O)
x (N + Dx X :
o) o 0
- = h = - ——— T =
aj - b El’ bl - ¢y hEBs cq - a; hES (q °°)
(26)
As an immediate consequence
(az = b2) >0, (bo-c¢2) <0, (czx-ap) >0
(27)

(al - bl) < O, (bl - Cl) > O, (Cl - al) < O

These conditions summarize and specify all restrictions placed so far

on the direction cosines. They still 1eave much room for free choice.
But, if they are satisfied, the values of zl, zg, zé, for all wind direc-
tions 0 £ q £ o, vary monotonlcally* between hD, and hE,;, hD3 and hEs,
hDs and hEs, thus insuring that one is measuring effectively '"at" the
height h. This, however, is not enough,

One must also see to it that, near height h, the three beams are
close to each other; i.e., that the travel paths Rab: Rbc: Rca are
reasonably short line segments Evaluation of expressions (16) in terms
of horizontal winds and the quantities introduced in the meantime yields

R =1 + q2 o Di- Es A
ab uv Eg + D,
A D,
* = (p + 1)¥g Dz - Ex
e =Y+ e® T [P (28)
A+1°D
y -
R VT +qe—Jto  [PacEBe
ca V‘EE +q Dg
Ds y

*This can be seen by consulting the differential quotients dz;/dq. It
is also evident from the course of a hyperbola near its horizontal
asymptote.
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where y stands for y,/x,:

N

v=—0. (29)
o

These results indicate that, even though the D and E are all to be chosen
close to unity, one must select them such that

DJ.:-E.EE.L-__EL#I h
El 7\&2-])2
b, - ¢
23=_B+1 1 1
c, - a
. Ds ., 214
Es Co - ap 7

More conditions for the relationship of direction cosines and detector
locations will appear in section VII.

At this station it will merely be pointed out that the distances
(28) attain minima for certain values q = qpujin:

J D - E D
ol e = [P O T
2% min N1+ ;. 1 BV E1
o D - E
Rpe =X (———-—7\+1 5| vith qmin=?\I}llE)2 - 6D
min °J1 + q‘:lin 3 K v Es
, Dy - E D
R-“‘ = X 1 = 2 with q . = }' -
al . o > Eg min v Eg
min 1 + qmin
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While at ¢ = 0 and q = » the points P* must not be too far apart to avoid
physically prohibited long travel times, the minimum distances must not

be too short to prevent experimental inaccuracies from falsifying the
outcome,*

The core of the space volume traversed by closely bundled beams is
a triangular prism with (non-parallel) bases, P“ P“ PE and Px P* Pk on
figure 4, Their shape is not critical; no further restrlctlons on
direction cosines issue from position requirements for the corners.
The latter's heights (z-coordinates) are approximately equal. Computa-
tion (with vz = 0) of the x- and y-coordinates as appearing in the
formulas (15) reveals that they all can be written in terms of z¥%, z%

% 1, 1
25_

X3 = a,z%(q) y3 = aszh(a) A

xz = =X, + blzﬁ(q) yz = uy, + bgz @)

x5 = -Mo + b,2%(q) yg = uy, +b z“(q)

. (32)

x% = %o + c125(2) yE = =yy + c2i()

K = N o= o 3

X5 = Xg t ¢ z (q) yi Vo cgzs(q)

Xt = a,z5(q) vE = a_zt(q) J

Although these coordinates depend on q (i. e., on wind direction), they
ordinarily would not vary very much, as the z3% (q) remain close to the
fixed height h. An exception occurs if one w1shes to examine a small
space volume at a large lateral distance from the origin. The beams
then must be sharply inclined towards the ground causing some of the
|ak| |bk| |ck| to be large, perhaps much larger than unity. In such
cases the lateral location of the space volume cannot be adequately
known beforehand, because it will markedly shift with the still
undetermined wind direction prevailing at height h., By contrast, if,
e.g., the a-beam is sent up vertically (a, = ap = 0), one is sure to
measure more or less overhead, the corners Pl and P6 of the prism being
located on the z-axis. The other four corners remain dependent on q,
however.

If from an independent source the wind is known as horizontal, these
requirements could be relaxed regarding Rca’ since Tga is not needed
for the determination of V,; and V.
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In concluding this section the system (20) will be put into a form
more suitable for the argumentation in the next one. By repeatedly
employing expressions (24) and (26) one finally arrives at the
representation

\
. o L Qe
1 & T =
Tab Tbc
Y (33)
Q
e-o (- %
Tab be
J
where
\
QQ)
1 - =
- 1 (ay - bp(cp - bo) - (as - bg)(cl = bl) 1 Qo
c1 - by M (az - bp) + y (a; - by) S M Dy
E, ?
c_-b E
C: =2 2=“'+l —_— 0
bl-cl ?\+1VD3> J
(34)

The ten parameters Xor N Hs Vs ap, by, ¢, are here reduced to four:
F, C Qu» Qg

Looking at F it is clearly necessary that

al-blC2'b2

= # 1. (35)

OIO
8

(o}

By requirements (27) this ratio is positive, so that Q, and Q, must have
the same sign in addition. That D,/E; should be different from unity
has already been deduced from the physical necessity to have the travel

paths Rj}, as different from zero; see set (30). The lines a and b must
not intersect.
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Truly important are the last three parameters, as will be seen
shortly. 1If they can be assigned values so as to keep error trans-
mission, height variation, and detector distances in bounds, the problem
will have been solved. Pertinent analyses are offered in the next two
sections. They will show the requirements as partly incompatible; a
trade-off is unavoidable.

The knowledge of all four parameters is necessary for computing V,
and Vo, from the set (33).

VII. ERROR PROPAGATION TN DETERMINING HORIZONTAL WINDS

Freedom in the choice of the beam arrangement is further narrowed
down by the desire to minimize the effect of observational errors on
the wind vector results., For the investigation to follow let us agree
on a pivotal travel time of 1 second subject to a 10 percent error in
ascertaining it. The ensuing uncertainty of + 0.1 second will be taken
as typical for all travel times. This excludes t1's materially smaller
than 1 second as suspect of too great inaccuracy. The observational
error should remain small relative to the peak times.*

1f winds up to k knots, i.e., up to (approximately) 1/2 k m/sec,
are to be measured with some confidence, none of the minimum path lengths
(31) will be allowed to be appreciably shorter than 1/2 k m, so that not
less than 1 second is needed for the eddies to cover the travel distance
in between beams. This places a restriction on detector locations and
beam directions. Another one stems from the necessity of limiting the
lengths of the longest paths (at q = 0 and q = ») in order not to
obliterate the correlation. It is bound up with the behavior of the
turbulent flow under observation, and therefore less definite unless
pertinent flow characteristics can reasonably well be guessed at.

By the system (33) the magnitude of the wind vector becomes

Q \? Q, \°
V=T <} - 3:>+02<-—{ +—,—?> (36)
Pl A\ e ab b

* .
“Other assumptions on it would of course alter the analysis of the
present section,
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The direction of the wind is given by

e

== = tan = = L - Qm ' 37
vV, $=17¢q -v (37)

No decision can be made here on the (equal) signs of Q, and Q,. Whether
they are both positive or both negative, the condition

o
A
Mal

TIA

8

is always met, the constant C being positive.

There are practical advantages in using a beam configuration where
sz and Tﬁc are of equal sign (Q > 0); the mathematical notation is
simpler, and the records handle more easily, since the travel time T?
will as a rule have the opposite sign. To show this, suppose that the
beams are running such that, if at height h a horizontal wind is blowing
with an azimuth in 0 = ¢ = 90°, the registering eddies proceed from
a tob (sz > 0) and from b to ¢ (7, > 0) (although at slightly dif-
ferent levels close to h). At a third level near h they should move
from a to ¢ in a majority of cases; but, since in Figure 4 the "positive"

direction m was taken from c to a, m = -v, causing Tia to be negative
(compare expression (5) for V, as it would be written for the transition
c —>a).

Let us then simply require that

0<Q =QsQ. (38)

Is there a way of assigning favorable values to the parameters
Q,> Qy» C such that variations of * 0.1 second in the t's have as little
effect as possible on V and ¢? Those values could not be expected to
minimize the errors in all admissible wind vectors; in fact, they can
achieve that for some directions and strengths only. However, one may
endeavor to keep the error within certain bounds, say 10° in direction
and 10% in strength.

As regards direction errors it follows from relation (37) that

2 Qo - Q

cOsS < 0

¢ (@ -2

do =
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Writing, for short,

T;b = T3, Tic = To, (39)

Thus, in a first approximation, the angle error engendered by the errors
AT, and Aty becomes

c@Q, - Q) AT = QATy
PR, -0 F@- 2 T (40)
Since by definition (21)
1.8 (41)

it is seen that, at a fixed value of Q, the error will increase when
ITll or |T2| decrease. This is further reason for not admitting travel
times below 1 second.

The observational errors have been limited to * 0.1 second. Draw-
ing on the worst case we have therefore to consider the error possibilities

ATy = ATs = £ 0.1 sec
, (42)
ATy = =A1s = + 0.1 sec
so that
C - -
Q, - Q) LI o

M= A2 080, - 2+ @ - Q2 Ta

With the upper sign the errors Ap are relatively small. Concentrating
on the second possibility we shall take either T; = +l, or 15 = +1¥
(the lowest values admitted).

*Negative unit values for 1, or Tp result in the same errors with the
opposite sign,
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Dealing at first with 7; = +1 and writing

Mpy = Atz - CQp = Q)F,(Q),
where

_ 1 +Q
Fl(Q) - CZ(QO - Q)2 + (Q - QOO)Z ’

one is restricted to the interval 1 = Q = Q, corresponding to 75 = 1.

Taking secondly 75 = +1, one has to write

Nz = Atz - C(Qp - Q )F2(Q)
with

QL +Q)
C®Q, - %+ (Q - Q)*

F2(Q) =

and the restriction Q, =Q =1, as 7, 2 1 here. Note that to set 75 =1
in expression (43), one must introduce in it the relation (41).

On differentiating the functions F; and F, with respect to their
argument Q one finds that both can have maxima within the respective
Q-intervals on condition that

1 - Qg Qy + 3

Qo-lQo+3

CZ

1\

K, = in the first case,
(44)
1-Q,3,+1

Q, - 13, +1

C2

IA

K2=

in the second case.

Neither the values Q% and Q% at which these maxima reside, nor the corre-
sponding maximal errors are given here, because, with the relationship of
Qs> Qo and C® adopted later, the above conditions are not satisfied. 1In
these circumstances the largest absolute error occurs at an interval
terminal; one can show that in both cases this is Q = 1. The errors Ap,
and Xp, are then equal and amount to

(45)
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OTo being taken as * 1/10. Notice that this is an estimate only for the
actual error (differences have been treated as differentials).

Up to now nothing more definite can be said about the three parameters
than that they should so be selected that the largest angle error won't
exceed 10°. Further hints would be expected to issue from a discussion of
the strength errors.

With the aid of relation (41) logarithmic differentiation of expres-
sion (36) for V yields

av _ 1 @-%) (-Q®dTy +Q dt2) + €3(-Q + Q) (Q%d7y - QudT2)
Voot @ - Q) + C5(-Q + Q)"

If again differences are written for differentials, the relative strength
error in terms of AT, and Aty is being estimated as

a1 @arlef@g - @) - @ - Q)] + AtelQ @ - Q) -, C2(Q ) - Q)]

T2 @Q - Q) + C2(Q, - Q)

(46)

Like the g-error it changes sign with 75 (and 7;) and absolutely increases
when T; or To (taken as positive) decrease,

We wish to determine the worst possible errors. With this end in mind
let us consider values of Q, and Q, such that

Qo <1 <Qgq.- (47)

Then if 1, has the smallest admissible (worst) value (71, = 1), the travel
time 1o can vary in

1l = T2 £ TlQo = QO; (488')
if 175 is left constant as unity, T; can move in

15 s—=2=-1, (48b)
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It is advisable to examine first the second of the possibilities
(42):

v, Ats @7 Q) Qe Q%) - C3(Q - Q)@ + Q)
17)2 - To (Q - Qm52'+ CE(QO _ Q)Ef* . (49)

At Q = Q,, To can be taken as unity; 7, can be taken so at Q = Qo- Hence
the errors at the Q-interval boundaries will be written as

AV AT Qo + Qg )
Palg <, " = Q-
] P. (50)
R
) 1 Ro‘%o Qm)J

In the last expression relation (41) has been put to use again.

Assuming Q, >> Q,, and |A72|= 0.1, the worst terminal errors (at
T2 = 1 and 77 = 1, respectively) are of the order of 10 percent. Since
they are of opposite sign, the error zero occurs at least once in
Qe = Q = Q, (the observation errors cancelling each other). The value
Q = 1 with which both 7; and 75 can be unity belongs to both the intervals
(48a) and (48b) (standing at the lower end). While nothing much can be
done to reduce the error at the upper end, we can see to it that at Q =1
it becomes zero. Expression (49) then yields the relation:

1 -qQ2
2_ [0¢]
c® = 63—:—T-. (51)

It simplifies further if we require (as seems best to do) that the longest
travel paths associated with 74 = 1 and 75 = 1 should be equal. These are
covered in Q, and 1/Q, sec., respectively, as can be seen by the ranges
(48). Thus,

Q, = 1/q, (52)

and

. C = Q- (53)
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As a consequence of these stipulations the worst relative error (49)
may now be written as

AV N AT2 Qm(Q3 = 1) = Q2 +Q A
Va1 o @F+ 1) -

where
Qo + Qo° . (54)
-y ;
T, =1 inQ,=sQ =1
72=Q71;=Q inl=Q=Q
o J

Clearly, the relative error is 0 at Q = 1., No other zero error (AV/V)
exists, since the equation 2

Qu@F+Q+1)-Q=0

has no real roots.

Relation (37) now attains the form

Q- Q

1T T

and shows that q = 1 when Q = 1, That is, we have decided that the strength
error zero existing when At; = -ATy should occur for a wind with azimuth
45° (or 225°).

In the event that At; = At (first of the possibilities (42)) one
finds that

. Atz tQ @2 +1) +Q% +Q

T2 @+ 1) - 2Q

(53)
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2

g B ATE QO = Qoo
Vil T T G
(56)
A Q, - Q%
(& - T2 [00] [s]
Vil Q=Q0 T1 QO(QO - Qoo)

In formula (55) the relationships (52) and (53) are incorporated. The
worst terminal errors again are about 10 percent with Q > Qo> both of
the same sign this time, One can show that there is no zero of the
function (AV/V) in Qi = Q = Qy; however, absolute errors less than
those at the termlnals will prevail in the interior of the Q-interval.

Turning to the angle error we notice that the stipulations (52) and
(53) can be combined to

1'Qoo

C=—-,
Q, - 1

so that, with Q, < 1,

Qo "1 Qo+ 3 Q+3

I_<.l= = >1

C® 1 -Q,Q, +3 1+ 3Qu ’
3Q+ 1

R e — <1,

c2 3 +4qQ,

Conditions (44) are violated; the error expression (45) applies and can
now be written as

1 +Q,

__1_
101 -q,

IAmlargest -

If the largest deviation permitted is 10° ~ 0.175, one obtains an upper
bound for Q, as well as a corresponding lower bound for Qo

A

R

—
=
=
o]
w]
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For deciding on a definite value for Qo we recall that the ratio of
travel times Q for a (constant) wind is equal to the ratio of the eddy
travel paths. Thus, with ¢ = 0,

%
_ 1= _ Rbc
Q = 7 =R
11g=0 abliq=0
Since
*
R
ab q=0

is already longer than the minimum path, one would not care to select Q,
too large. Table I below (slide rule computation) is based on

Q, = 5.

If a turbulence pattern moving parallel to x-axis needs 1 second to cover
the distance between the a- and b-beams, it requires 5 seconds for the
distance between the b- and c-beams and therfore is assumed here to essen-
tially preserve its characteristics during any 5 seconds of of observation
time in order to insure a well-developed covariance peak. With a speed of
20 m/sec this corresponds to a 100 m stretch.

It is important to keep in mind that Q and Q, (corresponding to
¢ = 90° and @ = 0°) are the limits of serviceable peak time ratios.
Observed ratios

T* ¥

T
;%E < % and ?gg >5
ab ab

ought to be discarded since there is suspicion that they might not have
been produced by a single wind present near height h.

For computing Table I the now particularly simple and symmetric
equations (33) are available:

1
S5FV, = =— - —
V1 T1 T2
1
5FV2='T—+TI_5"
1 2
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The indices 1 and 2 are interchangeable without altering the form of the

equations.

It suffices therefore to deal with the half-range 1 £ Q = Q

only; the same absolute errors prevail in Q_ = Q s 1. The value of 5F

o}

is inconsequential for our purpose which is concerned with ratios only:

1
V2 V2
— = t _— =
v, an @, 7

tan ¢'.

The primed quantities assume that the peak times as determined by the
records deviate by as much as * 0.1 second from the true times, 7, and 7..
While these are already the largest deviations considered likely to occur,
the error situation is still worsened by adopting the smallest values,

Tl=13 T'l=

1.1, as can be done in the above half-range.

These are

implicit in Table I which explicitly shows the t-- and Té-ranges only.

TABLE T

Worst Expected Errors (Q, = 5)

To Th (¥& - 1) x100% | ¢' - ¢ | 12 (Y% - 1) x100% | o' - o
5.0 | 4.9 -9.5 1°28' | 5.1 -9.5 0°56'
4.5 | 4.4 -9.6 1°4l' | 4.6 -9.5 1°1!
4.0 | 3.9 -9.4 1°57' | 4.1 -9.4 1°7°
3.5 | 3.4 -9.3 2°19' | 3.6 -9.2 1°10'
3.0 | 2.9 -9.2 2°51' | 3.1 -9.3 1°21'
2.5 | 2.4 -9.0 3°35' | 2.6 -9.1 1°31°
2.0 | 1.9 -7.8 4°46' | 2.1 -8.8 1°28'
1.5 | 1.4 -5.3 6°30' | 1.6 -8.5 1°13!
1.1 | 1.0 8°10' | 1.2 -8.6 0°13'
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The above errors are found little affected by the choice of Q, as
long as Q, =z 4. Attempts to reduce them by substituting for the condi-
tions (51) and (52) other relations judged promising* have met with no
decisive success; improvement in one place had as a rule to be paid for
by worsening elsewhere,

The errors shrink when both travel times are larger than pivotal.
This reflects the relative smallness of the constant observation error
in such cases and could not be expected to occur if the latter, for

example, were to be taken as increasing proportionately to observed
peak time.

VIII. EXPERIMENTAL ARRANGEMENT
The (relatively large) value selected above for Q, cannot be main-
tained. It must be relaxed in order
(1) to keep the Dj, Ej close to unity,
(2) to avoid too sprawling a detector configuration, and
(3) to secure reasonable travel path lengths.

The peak errors then will go up. We shall strive to hold them below 20°
in direction and 15 percent in strength,

It will be seen shortly that conditions (51) and (52) need not be
altered.

To inquire into these points we will have to make use of relation-
ships that exist among the position parameters A, u, v, the bounds Q,
Q> and the Dj, Ej.

* .
Such conditions were derived from the structure of the error approxima-
tions (43) and (46), and similar ones. Among others the case 1 <Q  <Q,
was studied.
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The first line in the set (26) may be written as

W, A
as - by = EBI

(b + Dy
b - co = - —'TD-Z)—— . (57)
yO

Co - as = EE;

Since the left sides add up to zero,

_D; Dy - Dy Dy Dg - Dy

= + = —
" g Dy - Dy’ M D D3 - Dy ° (58)

In an analogous manner, the second line yields

Ey Eg - Eg E, E_ - E

= , +1 =-=2-5___"1, 59
A Es Es - E; A Es Ex - E; %)

Because A and p are defined as positive, D;, Ds, Dg and E;, E3, Eg must
be in either ascending or descending sequence.

Again using the first line, we may write the first expression (24) as

Q. = - e
o p,+1

UIU
s (W
218

Both the lines (26) help to transform the definitions (18) for A, and A,
into

Xo¥0 1 1

(____

h “E; Ds

&
!

= A+ D@+

XoYo 1 1
Aq = 7\H R (E:'B;)’
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so that

%= TA E, -0, Es (60)
Analogous transformations yield
Q, = - A Ezle _k+1Ds;-Es D, 61
*® A+ 1E; A D E, - D; ° (61
181 o) 3 1 1
Solving equations (60) and (61) for D,/E, and Ds/Ex one obtains
1+>\"7‘\1L
Dy _ %
E'l ]_+L*-._1_1.
noo Qg
(62)
A
D, 1t T%
Es —_—
1+ 1 Q.

By expressions (31), these quotients exercise the dominating influence on
the minimum travel paths R:b and Rgc. Which one of these is the shorter
one cannot be seen at a glance. To clarify this question we note at first

that by relations (34) and (62),

Dy _p+1ly
B, AF1C
(63)
Do+t _y WD %y
E, N uw+1Q,Es AQ,C

With the aid of the results (62) and (63),

*

Rbe

2 2
min - C2Qo + Qoo
N cg2+1 -

%
Rab

min
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This root can have positive values smaller than, larger than, or equal

to unity. It would still have to be compared to (more involved) analogous
ratios formed with

min,

The virtually infinite number of possible minimum lengths is drastically
reduced if one limits the competing cases by stipulating the paths

as equal, i.e., by requiring that

1'Q020

—.
Q-1

cZ =

Surprisingly, this condition® is the same as was found earlier in demand-
ing that the zero strength error should occur at Q = 1, There is no
reason why the second of the former conditions should not be adopted

as well:

QoQOO = 1) (52)

so that the simple relation
C = Q, (53)

again applies.

To keep the minimum path lengths different from zero none of the
ratios Dj/E{ must be equal to unity. On the other hand, the beams, as
is required of them, will be running at approximately the same height in

otls

"It means that the equal minimum distances are found between the heights
z1(q) and zs(q) defined by q = Q, and q = Q, (both of these values are
in 0 £ q £ »).
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parts if the Dj and Ej are allowed to range between, say, 0.9 and 1.1
only. Their ratios then move between 0.818 and 1.222 with exclusion of 1.

For a more detailed investigation take

to start with. The first of the expressions (62) coupled with condition
(52) then yields

L_A+1 o
- <S5k - L (64)

With u > 0 (as was agreed upon) the right side must be positive:

% > Qg -1, (65)
From Figure 5,

L__xz

A Xo
so that Q = 5 would require an uncomfortably large value for this ratio

of P5, Po-coordinates,

In the same way, when limiting D,/E; to an upper bound of 1.2, we
obtain the further condition

L.2 A+l L),
H>6Qm<>\ o 5> L. (66)

If we tentatively introduce the values Q, = 2 (Qn = 1/2) and 1/A =5
compatible with the unequality (65), the quantity p = -yo/ys, according
to inequalities (64) and (66), should be taken out of the range 2 < u < 6.
Let us select p = 4,
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Before proceeding further, it is advisable to probe into the (approxi-
mate) error peaks to be expected when using the much lowered value of Q.

Regarding the angle error,*

1 1L +Q
|A¢|1argest 1071~ Q, = 0.3

This corresponds to 17°11',

It suffices to compute the worst strength errors at Q = Qg. With
|Aﬂ2| = 0.1 and t; = 1 expressions (50) and (56) give

AV - .3 1oy

2 .20 (~ -15%)
Q=Q,

&, o ORIt AP
Q=Q

o

This appears bearable. A table containing more accurate error
results is supplied at the end of the section,

Based on Q, = 2, A= 1/5, p =4,

ata
w

= 0.0256x = .
abl in 3545 o~ "belpin

ol
ri

" Conditions (44) are not satisfied, as they were not with Q = 5.

ateats
W

To comply wit

1
ATE = -0.1.

e

1 the later Table II, we have taken here Ar; = 0.1,
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The factor of xo would increase (as one might desire), were the parameter
u to be taken as 5, for instance; but then the third distance,

%
Rca ’
min

would become markedly shorter. For calculating it we have to use the
quantity

=C

><|c';<

A+1Ds 4
Ex

uwt+ 1 ?3?’

o]

where C = Q, = 1/2; D»/Ex is found from the second of the expressions (62).
With the smallest admitted value, 9/11 = 0.818, for Dg/Eg one obtains

R:'c

. = 0.0252x,,

min

which value increases to that of

*
Rab

min
on relaxing Ds/Es to 0.816.

A wind of 20 m/sec (= 40 knots) then covers a minimum distance in
one second (smallest travel time permitted) if

x = 780 m,
o

(Lesser winds require proportionately less.) Hence, the detector coordin-
ates must be chosen as

Pi: x; =0, vy =0,
Po: Xp = =My = -156m, yp = pvx, = 356.7 m,

Px: x3 =x, = 780 m, Y3 = -vxg = -89.1 m,
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These figures represent the most compact detector configuration that can

be obtained with the values chosen for Qg, A and p, if winds up to 40 knots
are to be measured reliably.

A check into the longest paths (at q = 0 and q = «) with the aid of
expressions (28) reveals that all beam distances remain below 44.6 m,
except the distance Ria which drops from 143.5 m at ¢ = 0 (q = 0) to
47.2 m at ¢ = 7° (q = 0.123) and continues down to the minimum. The
relatively long c-a-paths may sometimes cause difficulties in covariance
peak definition, but on the whole the beams appear running sufficiently
close in the region proposed for measurement,

If the actual eddies are suspected to be very sizable, one might
wish to increase the minimum distance to avoid spurious or untrustworthy
correlation maxima. The detectors must then be located farther apart
than above,

It will be noted that the observation height h does not directly
enter into the determination of the detector coordinates.® However,
according to set (26), it affects the calculation of the beam direc-
tions which also depends on the quantities D; and Ej.

The small value assigned to the ratio Dg/Es suggests using the
lowest possible figure for Dg. If we put

D5 = 0.9,

et
riyd

Eg = 1.102.7%

The rest of the Dj and E; is found in a more cumbersome way. By com-
bining expressions (58) through (61), one obtains the expressions

ol

" An indirect influence will be recognized later.

et

““This figure, slightly larger than the admitted value 1.1, arises
through adopting the ratio 0.816 instead of 0.818.
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After applying

the second of relations (63) and solving for

1_%
Dz - D, Q,
“ Dg - D3 c Do
=21
VE5
]__Q_°°
Es - E QOCDs o
T Es - Ex QooVESCDs >
£ 2.
v Eg

one uses expressions (58) and (59) to obtain

Dy = ubsd E; = NEse
Ds = (u+ 1) Dg —mr Ee= (A+ 1) Ec ——
3= (L+ 1) Ds =7 3 S5¢+1°
With the parameter values chosen so far,

5 = 3 ¢ = 10.71

10.28 ° 2.57

13,5 5.67

= —= = 1,01 = - = 1,06
D3 = 13.28 ! Ez = 5312 068
Ds = 0.9 Es = 1.102

The D's and E'
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These results imply that we have to require wind constancy from 0.9 h
to 1.05 h at ¢ = 0, and from 0.92 h to 1.1 h at ¢ = 90°, In between the
requirements are less The three hyperbolas zl(q) approach each other as ¢
increases'from @ = 0 on and actually intersect at one value® of q = tan o3
for it, P7, P3, P* lie on the same horizontal line, rendering the required
layer thickness zero. Further increase of ¢ widens the traces up to the
distance of 0.18 h at ¢ = 90°.

If one intends to measure at a large height, the vertical layer near
the @-terminals may be judged too extended for the winds to be constant in,
In such a predicament, one would calculate the stretch, q; = q = q5 of
the zl-curves in which they can be considered suff1c1ent1y close This
would exclude the measurement of winds blowing in a certain range of azi-
muths near ¢ = 0 and ¢ = 90°. Mathematically, new Q-terminals, Q; > Qo
Q2 < Qqy, obeying the relation

Qw * Ca1,2 Q Qo *+ 91 2
Q, 2 1 +Cqy,» T 1+ Q, 9,2

would be introduced, causing a curtailing of the admissible t-ratios and
therefore of measurable wind directions. 1If this is undesirable, one
would have to keep the Di and Ei closer to unity than before with the
consequence of a more sprawling detector layout, especially since, in
addition, higher up one should have to allow for strong winds.

If we plan to use the detector locations as given above for measure-
ment at h = 100 m, wind vector constancy is required at most from 8 m
below to 10 m above h (when ¢ = 90°), and from 10 m below to 5 m above
(when ¢ = 0°). Assuming this as warranted we can proceed to find the
beam directions.

The system (57) for computing as, bs, ¢s is underdetermined, since
there is a linear relationship of the left sides. As a consequence, one
equation must be left out. There is still freedom in choosing one of the
unknowns, say as = Oo/Qs. Thus

Bz Qo 4 x89 _ Q2
T e D e Semmee—— — 3
bz = Bz 0z 100 x 1.05 o 3.39
Y2 _ Q2 89 _ Qe
cz= S tTo0x0.9 o 00

% %
“This is q = 0.275, corresponding to 2] = 1.035 h.
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In the same way, the second line (26) gives

B1 ) a4
by == =g, + == = —=
1 53 1 hEl s + 1.70
Bn_, e % 7.08
c = = - —— LT e— .
15y 1" hEs Qs

Together with the orthogonality conditions <:}:o€ =1, etc.> , these
1

expressions determine B and 2 once ¢ is chosen. Take, for example,

2 . 3 .
05 = 5 (73.6°), Q2= 3 (64.6°), a5 =2 (31°).

Then,

1
Bs = —hp (78.8%), pa=- 222 anse), gy = 22 (24.39)

T 5.16 5.16
1 o _ 2.49 o 4,08 o
¥s = 788 (78.2°), Yo = 788 (59.4°), ¥ = - m (146.7°).

The figures in parentheses give the angles made by the three beams with
the positive coordinate axes. Those with the z-axis are rather large;
the beams have relatively low inclinations towards the ground plane.
When they approach each other in the region of interest, many of their
horizontal connections can therefore run approximately at the same
height (those with directions in 0 s q = «).

Flatness of at least two beam courses is required at any height one
wishes to explore, If it is large, the detectors will have to be placed
widely apart, or else one must be content to monitor a smaller sector of
the rose. (It will be remembered that covariance peaks could originate
through unrelated winds and that, in order to minimize that danger, one
has to force the beams into close neighborhood near h so that the atmos-
pheric motion there can be considered uniform,)

Actual analysis errors encountered with Q. = 2 are given in Table II
which again is based on 7; =1, T& = 1.1 and is computed only for
1 =Q=Qy,=2. Tt is assumed as before that the worst observational
errors in 15 are * 0,1 second. Observed travel time ratios T2/Tl > 2
and < 1/2 ought to be discarded on suspicion they might not be related

to a single wind blowing near the height h = 100 m.
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TABLE II

Worst Expected Errors with Q, = 2

! 1
T2 | T2 (yv - 1) x100% | o' - o [ 75 (XV - 1) x100% | ¢' - o

2 1.9 -13.3 6.4° 2.1 -10.4

1.9°
1.6 | 1.5 -12.1 9.9° 1.7 -10.0 2.0°
1.3 1 1.2 - 7.6 14,0° 1.4 - 9.0 1.6°
1.1 1.0 0 16.2° 1.2 - 8.9 0.7°

These errors reduce with slower winds, i.e., with larger values of
the T's. A wind half the strength of that in Table II would (with T, = 2,
Ts = 4) be subject to a largest error (incurred with Aty = 0.1, Ats = -0.1)
of ~77% in strength and 3° in direction, as compared to -13.3% and 6.4°,
respectively. 1In like circumstances the large figure Ap = 16.2° on the
last line would reduce to Ap = 8.2°.

In general, if one decides not to use observed travel times below,
say, 2 seconds (instead of 1 second), the requirements for the experi-
mental arrangement will be less stringent under the assumption made in
the present report of an observational error |AT| < 0.1 second. The
layout can be modified accordingly. The one described here is but one
example; others can be constructed following the same guidelines with
shifted accents or altered assumptions. A simple case in question is to
select a different free beam direction.

IX. CONCLUDING REMARKS

0f the many parameters entering the problem only two remained
arbitrary at the end, both direction cosines. Perhaps use could be made
of the discretion thus given to us to forge a link with a fourth beam
destined either to widen the range of azimuths measurable at one sitting
or to explore winds at a different height simultaneously (four-detector
arrangement), Similar aims could be pursued by utilizing existing multiple
detectors that receive light from several directions (residing in one plane,

| PR . et ~ i
however, with present versicns).
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If general (non-horizontal) winds are to be detected,the mathematics
are considerably more involved. The number of height functions zf will
increase from three to six. They will depend on two variables (q = vy/vy
and p = vz/v;) and thus describe six surfaces instead of the three rela-
tively simple hyperbolic lines. A rather large effort undoubtedly will
have to be spent in solving the problem. It might be preferable to at
first deal with winds, outside of storm clouds for example, that are
predominantly vertical rather than horizontal.

Detectors mounted on a plane or satellite flying at constant veloc-
ity present different complications. Mathematically, two Galilei systems
moving relative to each other are necessary for the description; physically,
the limited choice of detector positions hampers the freedom in adjusting
the parameters X5, A, W, v to meet given requirements. Some of them
probably will have to be relaxed. Which to select and how far to yield
will have to be discussed in the course of later work.

48



APPROVAL NASA ™™ X-53754

WIND VECTOR CALCULATION USING CROSSED-BEAM DATA
AND DETECTOR ARRANGEMENT FOR MEASURING HORIZONTAL WINDS

by W. H. Heybey

The information in this report has been reviewed for security clas-
sification. Review of any information concerning Department of Defense
or Atomic Energy Commission programs has been made by the MSFC Security
Classification Officer. This report, in its entirety, has been deter-
mined to be unclassified,

This document has also been reviewed and approved for technical
accuracy.

7
Strr Ly
E. D. Geissler
Director, Aero-Astrodynamics Laboratory

49



DIR
Dr. von Braun

DEP-T
Mr. Weidner

R-EO
Dr. Johnson
Mr. Attaya

MS-IP
MS-H
MS-IL (8)
MS-T (6)
cC-P
I-RM-M

R-AERQO
Dr. Geissler
Mr. Jean
Mr. Murphree
Dr. Heybey (20)
Mr, Cummings
Dr. H. Krause
Mr. Dahm
Mr, Holderer
Mr. Reed
Mr. Heaman
Mr. Simon
Mr. Huffaker
Dr. F. Krause
Mr. Johnston
Mr. Funk
Mr. Jayroe
Mr. Hablutzel
Mr. Ellner
Mr. W. Vaughan
Mr. Lindberg
Mr. I. Jones
Mr. Stephens

Mr. Thomae
Mr. Horn
Mr. Baker

DISTRIBUTION

IITRI

10 w 35th St.

Chicago, Il1.

Att: Dr. Damkevala
Dr. Clinch
Dr. Mongtomery
Dr. Wilson
Dr. Dennen
Mr. Klugman
Col. Ferrell (2)
Mr. Phillips

Northronics

Res. Pk.

Huntsville, Alabama

Att: Mr. Ryan (2)
Mr. Bennett
Dr. Su
Mr. Barnett
Mr. Paranjape
Mr. Cikanek
Mr. Pooley

Colorado St. Univ.

Ft. Collins, Colorado

Att: Mr. Sandborn (2)
Mr. Pickelner

Env. Sci. Services Administration

Boulder, Colorado
Att: Dr. Bean (2)

Federal Avia. Agency
Washington, D. C.
Att: Dr. Powers

NASA Headquarters

RAO, Mr. W. A. McGowan
RV-I, Mr. P. A. Cerreta
SAB, Mr. T. G. George
REI, Dr. W. A. Menzel
RV-2, Mr. D. Michel
RAA, Mr. J. Parkinson
RAP, Mr. N. Rekos

Sci. & Tech. Info. Facility (25)

P. 0. Box 33

College Park, Md.
Attn: NASA Rep.

50

(S-AK/RKT)




